Weak Convergence in the Prokhorov Metric of Methods for Stochastic Differential Equations
نویسنده
چکیده
We consider the weak convergence of numerical methods for stochastic differential equations (SDEs). Weak convergence is usually expressed in terms of the convergence of expected values of test functions of the trajectories. Here we present an alternative formulation of weak convergence in terms of the well-known Prokhorov metric on spaces of random variables. For a general class of methods, we establish bounds on the rates of convergence in terms of the Prokhorov metric. In doing so, we revisit the original proofs of weak convergence and show explicitly how the bounds on the error depend on the smoothness of the test functions. As an application of our result, we use the Strassen–Dudley theorem to show that the numerical approximation and the true solution to the system of SDEs can be re-embedded in a probability space in such a way that the method converges there in a strong sense. One corollary of this last result is that the method converges in the Wasserstein distance, another metric on spaces of random variables. Another corollary establishes rates of convergence for expected values of test functions assuming only local Lipschitz continuity. We conclude with a review of the existing results for pathwise convergence of weakly converging methods and the corresponding strong results available under re-embedding.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملStudy on efficiency of the Adomian decomposition method for stochastic differential equations
Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved. Uniqueness and converg...
متن کامل